organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*Z*)-7-[2-(4-Bromophenyl)hydrazin-1-ylidene]-6-methyl-3-(pyridin-4-yl)-7*H*-1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazine

Hoong-Kun Fun,^a*‡Suchada Chantrapromma,^b§ Mashooq A. Bhat^c and Hatem A. Abdel-Aziz^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia Correspondence e-mail: hkfun@usm.my

Received 18 April 2012; accepted 19 April 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.112; data-to-parameter ratio = 20.4.

In the asymmetric unit of the title compound, $C_{16}H_{12}BrN_7S$, there are two crystallographically independent molecules with similar conformations. Both molecules are slightly twisted; the central 1,2,4-triazolo[3,4-*b*]-1,3,4-thiadiazine ring system makes dihedral angles of 9.65 (15) and 13.29 (15)° with the pyridine and benzene rings, respectively, in one molecule, whereas the corresponding values in the other molecule are 9.30 (15) and 4.84 (15)°. A weak intramolecular C-H···N interaction with an *S*(6) ring motif is observed in each molecule. In the crystal, the independent molecules are each linked through N-H···N hydrogen bonds and weak C-H···N interactions into ribbons along the *c* axis. The ribbons are further linked together by weak C-H···N, C-H··· π and π - π [centroid–centroid distances = 3.572 (2)–3.884 (2) Å] interactions.

Related literature

For bond-length data, see: Allen *et al.* (1987). For hydrogenbond motifs, see: Bernstein *et al.* (1995). For background to and the biological activity of [1,2,4]thiazolo[3,4-*b*][1,3,4]thia-][1,3,4]thiadiazine derivatives, see: Abdel-Aziz *et al.* (2007); Abdel-Wahab *et al.* (2009); Dawood *et al.* (2005); Holla *et al.* (2001); Janin (2007); Prasad *et al.* (1998). For the stability of the temperature controller, see: Cosier & Glazer (1986).

[§] Thomson Reuters ResearcherID: A-5085-2009.

V = 3258.6 (2) Å³

Mo $K\alpha$ radiation

 $0.19 \times 0.19 \times 0.18 \text{ mm}$

30220 measured reflections

9252 independent reflections

4788 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 2.67 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.058$

453 parameters

 $\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$

Z = 8

Experimental

Crystal data

 $C_{16}H_{12}BrN_7S$ $M_r = 414.30$ Monoclinic, $P2_1/c$ a = 17.9868 (7) Å b = 10.3830 (3) Å c = 21.2154 (6) Å $\beta = 124.671$ (2)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.629, T_{\rm max} = 0.644$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.112$ S = 0.999252 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C6A/N4A/C7A/N5A/N6A ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1A - HN1A \cdots N7A^{i}$	0.82	2.18	2.979 (4)	165
$N1B - HN1B \cdot \cdot \cdot N7B^{i}$	0.88	2.15	3.015 (4)	167
$C1A - H1AA \cdots N3A$	0.95	2.40	3.022 (5)	123
$C2A - H2AA \cdots N5B^{ii}$	0.95	2.61	3.512 (4)	159
$C4A - H4AA \cdots N6B^{iii}$	0.95	2.46	3.257 (5)	141
$C1B - H1BA \cdot \cdot \cdot N3B$	0.95	2.39	3.023 (5)	123
$C4B - H4BA \cdot \cdot \cdot N6A^{iii}$	0.95	2.41	3.210 (5)	142
$C16A - H16B \cdot \cdot \cdot N3B$	0.98	2.57	3.445 (5)	149
$C16A - H16C \cdots Cg1^{iv}$	0.98	2.72	3.469 (4)	133

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 2, -z + 2; (iv) -x + 1, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* (and *PLATON* (Spek, 2009).

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5121).

References

- Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573–1582.
- Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621–627.
- Holla, B. S., Akberali, P. M. & Shivananda, M. K. (2001). Farmaco, 56, 919–927.
- Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.
- Prasad, A. R., Ramalingam, T., Rao, A. B., Diwan, P. V. & Sattur, P. B. (1998). *Eur. J. Med. Chem.* 24, 199–201.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1512-o1513 [doi:10.1107/S1600536812017412]

(*Z*)-7-[2-(4-Bromophenyl)hydrazin-1-ylidene]-6-methyl-3-(pyridin-4-yl)-7*H*-1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazine

Hoong-Kun Fun, Suchada Chantrapromma, Mashooq A. Bhat and Hatem A. Abdel-Aziz

Comment

One of the most effective first-line anti-TB drugs is isoniazid (INH). Many analogues featuring the structure of INH have been synthesized and tested as antimycobacterials (Janin, 2007). On the other hand, 1,2,4-triazolo[3,4-*b*]-1,3,4-thia-diazine derivatives have been well documented (Holla *et al.*, 2001; Prasad *et al.*, 1998). In continuation of our interests in the chemistry of the analogs of the title compound (Abdel-Aziz *et al.*, 2007; Abdel-Wahab *et al.*, 2009; Dawood *et al.*, 2005), we reported the synthesis and crystal structure of the title compound (I).

In Fig. 1, there are two crystallographic independent molecules *A* and *B* in the asymmetric unit of (I) with differences in bond angles. The molecule of (I), $C_{16}H_{12}BrN_7S$, is slightly twisted. The middle 1,2,4-triazolo[3,4-*b*]-1,3,4-thiadiazine ring system (C6–C9/N3–N6/S1) makes the dihedral angles of 9.65 (15) and 13.29 (15)° with the pyridyl and benzene rings, respectively in molecule *A* whereas these values are 9.30 (15) and 4.84 (15)° in molecule *B*. Atoms of the 4-bromophenyl-hydrazono fragment (C10–C15/N1/N2/Br1) lie on the same plane with an *r.m.s.* deviation of 0.0270 (1) Å for molecule *A* and 0.0176 (1) Å for molecule *B*. In each molecule a weak intramolecular C—H···N interaction (Fig.1 and Table 1) generates an S(6) ring motif (Bernstein *et al.*, 1995). The bond distances agree with the literature values (Allen *et al.*, 1987).

In the crystal packing (Fig. 2), the molecules are linked into ribbons along the *c* axis by N—H···N hydrogen bonds together with weak C—H···N interactions (Table 1). These ribbons are further stacked along the *a* axis by π - π interactions with the distances of Cg2···Cg5 = 3.572 (2) Å, Cg3··· $Cg4^v = 3.884$ (2) Å and Cg6··· $Cg7^{iv} = 3.617$ (2) Å [symmetry code (v) = 1-x, 2-y, 2-z]; Cg2, Cg3, Cg4, Cg5, Cg6 and Cg7 are the centroids of C7A–C9A/N3A/N4A/S1A, C1A–C5A/N7A, C10A–C15A, C6B–C7B/N4B–N6B, C7B–C9B/N3B/N4B/S1B and C10B–C15B rings, respectively. A C—H··· π interaction was presented (see Table 1).

Experimental

To a mixture of 4-amino-5-(pyridin-4-yl)-4*H*-1,2,4-triazole-3-thiol (0.49 g, 2 mmol) and (*Z*)-*N*'-(4-bromophenyl)-2-oxopropanehydrazonoyl chloride (0.55 g, 2 mmol) in ethanol (30 mL), triethylamine (0.2 mL, 2 mmol) was added. The reaction mixture was heated under reflux for 3 h, then left to cool. The precipitated solid was collected by filtration, washed with ethanol, and dried. Golden block-shaped single crystals of the title compound suitable for *X*-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature after several days.

Refinement

All H atoms were placed in calculated positions with d(C-H) = 0.95 Å for aromatic and 0.98 Å CH₃ atoms. The $U_{iso}(H)$ values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are drawn as dash lines.

Figure 2

A crystal packing diagram of the title compound viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

(Z)-7-[2-(4-Bromophenyl)hydrazin-1-ylidene]-6-methyl-3-(pyridin-4-yl)-7H-1,2,4-triazolo[3,4-b]

F(000) = 1664

 $\theta = 1.9 - 30.0^{\circ}$

 $\mu = 2.67 \text{ mm}^{-1}$ T = 100 K

Block, gold

 $R_{\rm int} = 0.058$

 $h = -24 \rightarrow 16$ $k = -14 \rightarrow 14$ $l = -29 \rightarrow 29$

 $D_{\rm x} = 1.689 {\rm Mg} {\rm m}^{-3}$

 $0.19 \times 0.19 \times 0.18 \text{ mm}$

30220 measured reflections 9252 independent reflections 4788 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9252 reflections

[1,3,4]thiadiazine

Crystal data

C₁₆H₁₂BrN₇S $M_r = 414.30$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.9868 (7) Å b = 10.3830 (3) Å c = 21.2154 (6) Å $\beta = 124.671$ (2)° V = 3258.6 (2) Å³ Z = 8

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
S = 0.99	H-atom parameters constrained
9252 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0435P)^2]$
453 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1A	0.21285 (2)	-0.04237 (3)	1.17919 (2)	0.02953 (11)

S1A	0.47832 (6)	0.62207 (8)	1.11464 (5)	0.0252 (2)
N1A	0.36955 (18)	0.4220 (2)	1.11905 (15)	0.0209 (6)
HN1A	0.3936	0.4800	1.1511	0.025*
N2A	0.35167 (19)	0.4379 (2)	1.04891 (15)	0.0213 (6)
N3A	0.40347 (18)	0.6140 (3)	0.93433 (15)	0.0211 (6)
N4A	0.46926 (18)	0.7005 (3)	0.98702 (14)	0.0200 (6)
N5A	0.56814 (19)	0.8050 (3)	1.09318 (15)	0.0254 (7)
N6A	0.56960 (19)	0.8564 (3)	1.03296 (15)	0.0262 (7)
N7A	0.46123 (19)	0.9059 (3)	0.75564 (15)	0.0246 (7)
C1A	0.4377 (2)	0.7531 (3)	0.82800 (18)	0.0239 (8)
H1AA	0.4095	0.6761	0.8284	0.029*
C2A	0.4246 (2)	0.7974 (3)	0.76041 (18)	0.0255 (8)
H2AA	0.3875	0.7478	0.7152	0.031*
C3A	0.5160 (2)	0.9708 (3)	0.82084 (19)	0.0256 (8)
H3AB	0.5447	1.0462	0.8191	0.031*
C4A	0.5333 (2)	0.9342 (3)	0.89063 (19)	0.0252 (8)
H4AA	0.5725	0.9842	0.9352	0.030*
C5A	0.4928 (2)	0.8238 (3)	0.89486 (18)	0.0211 (8)
C6A	0.5110 (2)	0.7934 (3)	0.97021 (18)	0.0192 (7)
C7A	0.5078 (2)	0.7137 (3)	1.06399 (18)	0.0214 (8)
C8A	0.3948 (2)	0.5257 (3)	1.03816 (19)	0.0223 (8)
C9A	0.3703 (2)	0.5347 (3)	0.95940 (18)	0.0195 (7)
C10A	0.3285 (2)	0.3169 (3)	1.13031 (18)	0.0197 (7)
C11A	0.3397 (2)	0.3044 (3)	1.20077 (18)	0.0228 (8)
H11A	0.3716	0.3685	1.2391	0.027*
C12A	0.3042 (2)	0.1983 (3)	1.21474 (19)	0.0250 (8)
H12A	0.3118	0.1893	1.2627	0.030*
C13A	0.2580 (2)	0.1064 (3)	1.15898 (19)	0.0221 (8)
C14A	0.2448 (2)	0.1186 (3)	1.08789 (18)	0.0241 (8)
H14A	0.2121	0.0547	1.0496	0.029*
C15A	0.2797 (2)	0.2241 (3)	1.07330 (18)	0.0231 (8)
H15A	0.2705	0.2336	1.0248	0.028*
C16A	0.2991 (2)	0.4455 (3)	0.89978 (18)	0.0251 (8)
H16A	0.2913	0.4608	0.8507	0.038*
H16B	0.2419	0.4615	0.8940	0.038*
H16C	0.3178	0.3561	0.9157	0.038*
Br1B	-0.05294 (3)	-0.04795 (4)	1.15572 (2)	0.03264 (11)
S1B	0.20433 (6)	0.63491 (8)	1.09173 (4)	0.0215 (2)
N1B	0.11302 (18)	0.4113 (3)	1.10112 (15)	0.0224 (7)
HN1B	0.1418	0.4704	1.1370	0.027*
N2B	0.09887 (18)	0.4247 (2)	1.03202 (15)	0.0206 (6)
N3B	0.14408 (18)	0.6097 (3)	0.91571 (14)	0.0204 (6)
N4B	0.20336 (17)	0.7039 (2)	0.96629 (13)	0.0175 (6)
N5B	0.2957 (2)	0.8157 (3)	1.07072 (15)	0.0266 (7)
N6B	0.30106 (19)	0.8623 (3)	1.01197 (15)	0.0256 (7)
N7B	0.19972 (19)	0.9085 (3)	0.73658 (15)	0.0246 (7)
C1B	0.1683 (2)	0.7606 (3)	0.80669 (17)	0.0213 (8)
H1BA	0.1353	0.6880	0.8055	0.026*
C2B	0.1566 (2)	0.8074 (3)	0.74018 (18)	0.0228 (8)

H2BA	0.1144	0.7640	0.6936	0.027*
C3B	0.2610 (2)	0.9640 (3)	0.80338 (19)	0.0255 (8)
H3BB	0.2944	1.0345	0.8029	0.031*
C4B	0.2795 (2)	0.9255 (3)	0.87374 (18)	0.0248 (8)
H4BA	0.3248	0.9676	0.9197	0.030*
C5B	0.2301 (2)	0.8236 (3)	0.87509 (18)	0.0200 (8)
C6B	0.2458 (2)	0.7942 (3)	0.94951 (18)	0.0203 (8)
C7B	0.2370 (2)	0.7218 (3)	1.04183 (18)	0.0203 (7)
C8B	0.1359 (2)	0.5194 (3)	1.01993 (17)	0.0197 (8)
C9B	0.1158 (2)	0.5258 (3)	0.94249 (18)	0.0202 (8)
C10B	0.0730 (2)	0.3056 (3)	1.11196 (18)	0.0203 (8)
C11B	0.0878 (2)	0.2884 (3)	1.18328 (18)	0.0266 (8)
H11B	0.1244	0.3477	1.2235	0.032*
C12B	0.0489 (2)	0.1838 (3)	1.19575 (19)	0.0281 (9)
H12B	0.0590	0.1715	1.2444	0.034*
C13B	-0.0038 (2)	0.0990 (3)	1.1373 (2)	0.0247 (8)
C14B	-0.0197 (2)	0.1152 (3)	1.06614 (19)	0.0250 (8)
H14B	-0.0570	0.0560	1.0261	0.030*
C15B	0.0189 (2)	0.2178 (3)	1.05332 (19)	0.0242 (8)
H15B	0.0087	0.2286	1.0045	0.029*
C16B	0.0553 (2)	0.4243 (3)	0.88683 (18)	0.0285 (9)
H16D	0.0413	0.4447	0.8360	0.043*
H16E	-0.0008	0.4209	0.8843	0.043*
H16F	0.0858	0.3406	0.9037	0.043*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	<i>U</i> ¹²	U^{13}	U ²³
Br1A	0.0337 (2)	0.0289 (2)	0.0316 (2)	-0.00298 (18)	0.02195 (19)	0.00247 (17)
S1A	0.0290 (5)	0.0318 (5)	0.0180 (4)	-0.0060(4)	0.0152 (4)	-0.0021(4)
NIA	0.0248 (17)	0.0234 (15)	0.0168 (14)	-0.0031(13)	0.0133 (13)	-0.0014(11)
N2A	0.0245 (17)	0.0243 (16)	0.0159 (14)	0.0023 (13)	0.0119 (13)	0.0016 (12)
N3A	0.0201 (16)	0.0252(16)	0.0195(15)	-0.0024(14)	0.0122 (13)	-0.0040(13)
N4A	0.0201(10)	0.0252(10) 0.0267(15)	0.0132(12)	0.002(13)	0.0122(13) 0.0103(13)	-0.0007(12)
N5A	0.0190(10) 0.0294(18)	0.0207(13) 0.0316(17)	0.0175(15)	-0.0040(15)	0.0103(13) 0.0148(14)	0.0007(12)
N6A	0.0297(18)	0.0310(17) 0.0312(17)	0.0175(15)	-0.0044(14)	0.0134(15)	0.0003(13)
N7A	0.0267(18)	0.0312(17)	0.0100(15)	0.0044(14)	0.0134(13)	0.0003(13)
	0.0254(18)	0.0290(10)	0.0210(13)	-0.0006(14)	0.0140(17)	0.0033(13)
CIA	0.020(2)	0.0209(19)	0.0203(18)	0.0000(10)	0.0140(17)	0.0012(13)
C2A C2A	0.020 (2)	0.035 (2)	0.0100 (18)	0.0024 (18)	0.0072 (16)	-0.0011 (16)
C3A	0.026 (2)	0.029 (2)	0.0249 (19)	-0.0016 (17)	0.0158 (17)	0.0027 (16)
C4A	0.0192 (19)	0.031 (2)	0.0198 (18)	-0.0011 (16)	0.0079 (16)	0.0012 (15)
C5A	0.0165 (19)	0.0266 (19)	0.0212 (18)	0.0062 (16)	0.0113 (16)	0.0027 (15)
C6A	0.0160 (19)	0.0242 (18)	0.0167 (17)	0.0004 (15)	0.0088 (16)	0.0000 (15)
C7A	0.022 (2)	0.0267 (18)	0.0158 (17)	0.0005 (16)	0.0107 (16)	0.0017 (15)
C8A	0.0216 (19)	0.028 (2)	0.0178 (17)	0.0022 (17)	0.0115 (16)	0.0008 (15)
C9A	0.0172 (18)	0.0246 (18)	0.0169 (17)	0.0029 (16)	0.0098 (15)	0.0011 (15)
C10A	0.0158(18)	0.0219(17)	0.0209(17)	0.0024(15)	0.0102(16)	0.0031(14)
	0.0100(10)	0.0219(17)	0.0209(17)	-0.0032(16)	0.0102(10)	-0.0010(15)
CIIA	0.0203 (19)	0.0308 (19)	0.0181(17)	-0.0032(10)	0.0110 (10)	-0.0019(13)
CI2A	0.025 (2)	0.031 (2)	0.0224 (19)	0.0028 (17)	0.0152 (17)	0.0016 (16)
C13A	0.020 (2)	0.0263 (18)	0.0213 (18)	0.0025 (16)	0.0127 (16)	0.0028 (15)

C14A	0.024 (2)	0.0242 (19)	0.0214 (18)	-0.0004 (17)	0.0110 (17)	-0.0014 (15)
C15A	0.0193 (19)	0.031 (2)	0.0185 (18)	0.0030 (17)	0.0102 (16)	0.0034 (16)
C16A	0.027 (2)	0.0300 (19)	0.0217 (18)	-0.0035 (17)	0.0162 (17)	-0.0045 (16)
Br1B	0.0373 (2)	0.0280 (2)	0.0405 (2)	-0.00200 (19)	0.0268 (2)	0.00421 (18)
S1B	0.0253 (5)	0.0267 (5)	0.0144 (4)	-0.0035 (4)	0.0124 (4)	-0.0015 (4)
N1B	0.0283 (18)	0.0259 (15)	0.0159 (15)	-0.0047 (14)	0.0143 (14)	-0.0020 (12)
N2B	0.0185 (16)	0.0257 (16)	0.0177 (15)	0.0020 (13)	0.0103 (13)	0.0016 (12)
N3B	0.0212 (16)	0.0213 (15)	0.0192 (15)	-0.0031 (13)	0.0117 (14)	-0.0046 (12)
N4B	0.0174 (15)	0.0235 (15)	0.0113 (13)	-0.0003 (13)	0.0079 (13)	0.0000 (11)
N5B	0.0315 (18)	0.0340 (17)	0.0162 (15)	-0.0068 (15)	0.0146 (14)	-0.0012 (13)
N6B	0.0284 (18)	0.0310 (16)	0.0185 (15)	-0.0072 (14)	0.0140 (14)	-0.0008 (13)
N7B	0.0292 (18)	0.0309 (16)	0.0171 (15)	0.0028 (14)	0.0151 (15)	0.0016 (13)
C1B	0.023 (2)	0.0227 (18)	0.0177 (17)	0.0019 (16)	0.0116 (16)	0.0027 (14)
C2B	0.026 (2)	0.0247 (19)	0.0165 (17)	0.0066 (17)	0.0110 (17)	0.0002 (15)
C3B	0.028 (2)	0.0287 (19)	0.0247 (19)	0.0005 (18)	0.0180 (17)	0.0041 (16)
C4B	0.022 (2)	0.034 (2)	0.0142 (17)	-0.0019 (17)	0.0085 (16)	0.0015 (15)
C5B	0.0199 (19)	0.0259 (18)	0.0144 (17)	0.0042 (16)	0.0098 (16)	0.0042 (14)
C6B	0.021 (2)	0.0224 (18)	0.0178 (17)	-0.0001 (16)	0.0112 (16)	0.0013 (15)
C7B	0.0190 (19)	0.0259 (18)	0.0167 (17)	-0.0007 (16)	0.0105 (16)	0.0010 (15)
C8B	0.0182 (18)	0.0262 (19)	0.0155 (17)	0.0019 (16)	0.0102 (15)	-0.0010 (15)
C9B	0.0198 (19)	0.0256 (19)	0.0181 (17)	0.0005 (16)	0.0125 (16)	-0.0033 (15)
C10B	0.022 (2)	0.0219 (18)	0.0221 (18)	-0.0018 (16)	0.0153 (17)	-0.0008 (15)
C11B	0.034 (2)	0.0278 (19)	0.0216 (19)	-0.0062 (18)	0.0175 (18)	-0.0042 (15)
C12B	0.033 (2)	0.034 (2)	0.0225 (19)	0.0019 (18)	0.0188 (18)	0.0031 (16)
C13B	0.022 (2)	0.0236 (18)	0.031 (2)	0.0010 (17)	0.0168 (18)	0.0042 (16)
C14B	0.022 (2)	0.0259 (19)	0.0236 (19)	-0.0023 (17)	0.0110 (17)	-0.0021 (16)
C15B	0.023 (2)	0.032 (2)	0.0195 (18)	0.0016 (17)	0.0127 (17)	0.0017 (16)
C16B	0.033 (2)	0.034 (2)	0.0200 (18)	-0.0089 (18)	0.0166 (18)	-0.0064 (15)

Geometric parameters (Å, °)

Br1A—C13A	1.904 (3)	Br1B—C13B	1.912 (3)
S1A—C7A	1.728 (3)	S1B—C7B	1.728 (3)
S1A—C8A	1.766 (4)	S1B—C8B	1.772 (3)
N1A—N2A	1.342 (3)	N1B—N2B	1.345 (3)
N1A—C10A	1.413 (4)	N1B—C10B	1.401 (4)
N1A—HN1A	0.8231	N1B—HN1B	0.8809
N2A—C8A	1.298 (4)	N2B—C8B	1.293 (4)
N3A—C9A	1.295 (4)	N3B—C9B	1.292 (4)
N3A—N4A	1.397 (3)	N3B—N4B	1.394 (3)
N4A—C7A	1.371 (4)	N4B—C7B	1.366 (4)
N4A—C6A	1.388 (4)	N4B—C6B	1.377 (4)
N5A—C7A	1.303 (4)	N5B—C7B	1.306 (4)
N5A—N6A	1.398 (3)	N5B—N6B	1.391 (3)
N6A—C6A	1.309 (4)	N6B—C6B	1.322 (4)
N7A—C3A	1.337 (4)	N7B—C3B	1.333 (4)
N7A—C2A	1.338 (4)	N7B—C2B	1.333 (4)
C1A—C5A	1.391 (4)	C1B—C2B	1.390 (4)
C1A—C2A	1.392 (4)	C1B—C5B	1.391 (4)
C1A—H1AA	0.9500	C1B—H1BA	0.9500

C2A—H2AA	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.381 (4)	C3B—C4B	1.391 (4)
СЗА—НЗАВ	0.9500	СЗВ—НЗВВ	0.9500
C4A—C5A	1.388 (4)	C4B—C5B	1.393 (4)
С4А—Н4АА	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.472 (4)	C5B—C6B	1.469 (4)
C8A—C9A	1.469 (4)	C8B—C9B	1.469 (4)
C9A—C16A	1.501 (4)	C9B—C16B	1.493 (4)
C10A—C11A	1.396 (4)	C10B—C11B	1.391 (4)
C10A—C15A	1.397 (4)	C10B—C15B	1.396 (4)
C11A—C12A	1.387 (4)	C11B—C12B	1.396 (4)
C11A—H11A	0.9500	C11B—H11B	0.9500
C12A—C13A	1.371 (4)	C12B—C13B	1.368 (5)
C12A—H12A	0.9500	C12B—H12B	0.9500
C13A—C14A	1.393 (4)	C13B—C14B	1.378 (4)
C14A—C15A	1.382 (4)	C14B—C15B	1.380 (4)
C14A—H14A	0.9500	C14B—H14B	0.9500
C15A—H15A	0.9500	C15B—H15B	0.9500
C16A—H16A	0.9800	C16B—H16D	0.9800
C16A—H16B	0.9800	C16B—H16E	0.9800
C16A—H16C	0.9800	C16B—H16F	0.9800
C7A—S1A—C8A	98.18 (16)	C7B—S1B—C8B	97.95 (16)
N2A—N1A—C10A	117.7 (3)	N2B—N1B—C10B	117.6 (3)
N2A—N1A—HN1A	120.6	N2B—N1B—HN1B	121.6
C10A—N1A—HN1A	120.2	C10B—N1B—HN1B	120.5
C8A—N2A—N1A	119.4 (3)	C8B—N2B—N1B	119.7 (3)
C9A—N3A—N4A	117.3 (3)	C9B—N3B—N4B	117.0 (3)
C7A—N4A—C6A	104.8 (3)	C7B—N4B—C6B	105.7 (3)
C7A—N4A—N3A	129.9 (3)	C7B—N4B—N3B	129.3 (3)
C6A—N4A—N3A	125.2 (3)	C6B—N4B—N3B	124.9 (2)
C7A—N5A—N6A	106.7 (3)	C7B—N5B—N6B	106.8 (3)
C6A—N6A—N5A	108.4 (3)	C6B—N6B—N5B	108.4 (3)
C3A—N7A—C2A	116.8 (3)	C3B—N7B—C2B	115.8 (3)
C5A—C1A—C2A	118.7 (3)	C2B—C1B—C5B	117.7 (3)
C5A—C1A—H1AA	120.6	C2B—C1B—H1BA	121.2
C2A—C1A—H1AA	120.6	C5B—C1B—H1BA	121.2
N7A—C2A—C1A	123.6 (3)	N7B—C2B—C1B	125.2 (3)
N7A—C2A—H2AA	118.2	N7B—C2B—H2BA	117.4
C1A—C2A—H2AA	118.2	C1B—C2B—H2BA	117.4
N7A—C3A—C4A	123.7 (3)	N7B—C3B—C4B	124.4 (3)
N7A—C3A—H3AB	118.2	N7B—C3B—H3BB	117.8
С4А—С3А—НЗАВ	118.2	C4B—C3B—H3BB	117.8
C3A—C4A—C5A	119.3 (3)	C3B—C4B—C5B	118.3 (3)
СЗА—С4А—Н4АА	120.4	C3B—C4B—H4BA	120.8
С5А—С4А—Н4АА	120.4	C5B—C4B—H4BA	120.8
C4A—C5A—C1A	117.8 (3)	C1B—C5B—C4B	118.4 (3)
C4A—C5A—C6A	116.6 (3)	C1B—C5B—C6B	125.1 (3)
C1A—C5A—C6A	125.7 (3)	C4B—C5B—C6B	116.5 (3)

N6A—C6A—N4A	109.0 (3)	N6B—C6B—N4B	108.5 (3)
N6A—C6A—C5A	123.3 (3)	N6B—C6B—C5B	122.8 (3)
N4A—C6A—C5A	127.6 (3)	N4B—C6B—C5B	128.6 (3)
N5A—C7A—N4A	111.0 (3)	N5B—C7B—N4B	110.6 (3)
N5A—C7A—S1A	124.9 (2)	N5B—C7B—S1B	124.6 (2)
N4A—C7A—S1A	124.0 (3)	N4B—C7B—S1B	124.8 (3)
N2A—C8A—C9A	115.0 (3)	N2B—C8B—C9B	115.4 (3)
N2A—C8A—S1A	121.2 (3)	N2B—C8B—S1B	121.9 (2)
C9A—C8A—S1A	123.8 (3)	C9B—C8B—S1B	122.7 (3)
N3A—C9A—C8A	126.7 (3)	N3B—C9B—C8B	127.9 (3)
N3A—C9A—C16A	114.7 (3)	N3B—C9B—C16B	114.9 (3)
C8A—C9A—C16A	118.6 (3)	C8B—C9B—C16B	117.2 (3)
C11A—C10A—C15A	120.0 (3)	C11B—C10B—C15B	119.4 (3)
C11A—C10A—N1A	118.8 (3)	C11B—C10B—N1B	118.8 (3)
C15A—C10A—N1A	121.2 (3)	C15B—C10B—N1B	121.9 (3)
C12A-C11A-C10A	119.9 (3)	C10B—C11B—C12B	120.0 (3)
C12A—C11A—H11A	120.0	C10B—C11B—H11B	120.0
C10A—C11A—H11A	120.0	C12B—C11B—H11B	120.0
C13A—C12A—C11A	119.6 (3)	C13B—C12B—C11B	119.5 (3)
C13A—C12A—H12A	120.2	C13B—C12B—H12B	120.3
C11A—C12A—H12A	120.2	C11B—C12B—H12B	120.3
C12A—C13A—C14A	121.2 (3)	C12B—C13B—C14B	121.3 (3)
C12A—C13A—Br1A	119.8 (3)	C12B—C13B—Br1B	119.4 (3)
C14A— $C13A$ — $Br1A$	119.1 (3)	C14B— $C13B$ — $Br1B$	119.3 (3)
C15A - C14A - C13A	119.7 (3)	C13B— $C14B$ — $C15B$	119.7 (3)
C15A—C14A—H14A	120.2	C13B—C14B—H14B	120.1
C13A—C14A—H14A	120.2	C15B—C14B—H14B	120.1
C14A—C15A—C10A	119.6 (3)	C14B—C15B—C10B	120.1 (3)
C14A—C15A—H15A	120.2	C14B—C15B—H15B	119.9
C10A—C15A—H15A	120.2	C10B—C15B—H15B	119.9
C9A—C16A—H16A	109.5	C9B—C16B—H16D	109.5
C9A—C16A—H16B	109.5	C9B—C16B—H16E	109.5
H16A—C16A—H16B	109.5	H16D—C16B—H16E	109.5
C9A—C16A—H16C	109.5	C9B—C16B—H16F	109.5
H_{16A} $-C_{16A}$ $-H_{16C}$	109.5	H16D—C16B—H16F	109.5
H16B-C16A-H16C	109.5	H16E— $C16B$ — $H16F$	109.5
	10,10		10,10
C10A—N1A—N2A—C8A	-173.4(3)	C10B—N1B—N2B—C8B	-178.7(3)
C9A - N3A - N4A - C7A	2.0 (5)	C9B - N3B - N4B - C7B	-0.1(5)
C9A - N3A - N4A - C6A	-178.9(3)	C9B— $N3B$ — $N4B$ — $C6B$	174.5 (3)
C7A—N5A—N6A—C6A	-0.7(4)	C7B—N5B—N6B—C6B	-0.5(4)
C3A - N7A - C2A - C1A	2.7 (5)	C3B - N7B - C2B - C1B	2.7 (5)
C5A—C1A—C2A—N7A	-0.9(5)	C5B— $C1B$ — $C2B$ — $N7B$	-0.2(5)
C2A—N7A—C3A—C4A	-2.5(5)	C2B—N7B—C3B—C4B	-2.0(5)
N7A—C3A—C4A—C5A	0.5 (5)	N7B—C3B—C4B—C5B	-1.1(5)
C3A—C4A—C5A—C1A	1.4 (5)	C2B—C1B—C5B—C4B	-3.0(5)
C3A—C4A—C5A—C6A	-177.5 (3)	C2B—C1B—C5B—C6B	174.8 (3)
C2A—C1A—C5A—C4A	-1.2 (5)	C3B—C4B—C5B—C1B	3.6 (5)
C2A—C1A—C5A—C6A	177.6 (3)	C3B—C4B—C5B—C6B	-174.4 (3)
	× /		

N5A—N6A—C6A—N4A	0.4 (4)	N5B—N6B—C6B—N4B	0.6 (4)
N5A—N6A—C6A—C5A	178.4 (3)	N5B—N6B—C6B—C5B	175.8 (3)
C7A—N4A—C6A—N6A	-0.1 (3)	C7B—N4B—C6B—N6B	-0.4 (4)
N3A—N4A—C6A—N6A	-179.4 (3)	N3B—N4B—C6B—N6B	-176.1 (3)
C7A—N4A—C6A—C5A	-177.9 (3)	C7B—N4B—C6B—C5B	-175.3 (3)
N3A—N4A—C6A—C5A	2.8 (5)	N3B—N4B—C6B—C5B	9.0 (5)
C4A—C5A—C6A—N6A	-7.5 (5)	C1B—C5B—C6B—N6B	-175.5 (3)
C1A—C5A—C6A—N6A	173.8 (3)	C4B—C5B—C6B—N6B	2.3 (5)
C4A—C5A—C6A—N4A	170.1 (3)	C1B—C5B—C6B—N4B	-1.3 (5)
C1A—C5A—C6A—N4A	-8.6 (5)	C4B—C5B—C6B—N4B	176.5 (3)
N6A—N5A—C7A—N4A	0.6 (4)	N6B—N5B—C7B—N4B	0.2 (4)
N6A—N5A—C7A—S1A	-178.5 (2)	N6B—N5B—C7B—S1B	-178.3 (2)
C6A—N4A—C7A—N5A	-0.4 (4)	C6B—N4B—C7B—N5B	0.1 (4)
N3A—N4A—C7A—N5A	178.9 (3)	N3B—N4B—C7B—N5B	175.5 (3)
C6A—N4A—C7A—S1A	178.8 (2)	C6B—N4B—C7B—S1B	178.6 (2)
N3A—N4A—C7A—S1A	-1.9 (5)	N3B—N4B—C7B—S1B	-5.9 (5)
C8A—S1A—C7A—N5A	179.2 (3)	C8B—S1B—C7B—N5B	-174.2 (3)
C8A—S1A—C7A—N4A	0.1 (3)	C8B—S1B—C7B—N4B	7.5 (3)
N1A—N2A—C8A—C9A	179.8 (3)	N1B—N2B—C8B—C9B	-179.7 (3)
N1A—N2A—C8A—S1A	1.4 (4)	N1B—N2B—C8B—S1B	-0.8 (4)
C7A—S1A—C8A—N2A	179.7 (3)	C7B—S1B—C8B—N2B	175.8 (3)
C7A—S1A—C8A—C9A	1.5 (3)	C7B—S1B—C8B—C9B	-5.5 (3)
N4A—N3A—C9A—C8A	0.0 (5)	N4B—N3B—C9B—C8B	2.4 (5)
N4A—N3A—C9A—C16A	179.3 (3)	N4B—N3B—C9B—C16B	-177.8 (3)
N2A—C8A—C9A—N3A	179.9 (3)	N2B—C8B—C9B—N3B	-179.8 (3)
S1A—C8A—C9A—N3A	-1.8 (5)	S1B—C8B—C9B—N3B	1.3 (5)
N2A—C8A—C9A—C16A	0.7 (5)	N2B—C8B—C9B—C16B	0.4 (4)
S1A—C8A—C9A—C16A	179.0 (2)	S1B—C8B—C9B—C16B	-178.5 (2)
N2A—N1A—C10A—C11A	-174.6 (3)	N2B—N1B—C10B—C11B	178.9 (3)
N2A—N1A—C10A—C15A	7.4 (4)	N2B—N1B—C10B—C15B	-1.1 (4)
C15A—C10A—C11A—C12A	1.5 (5)	C15B—C10B—C11B—C12B	0.1 (5)
N1A—C10A—C11A—C12A	-176.5 (3)	N1B—C10B—C11B—C12B	-179.9 (3)
C10A—C11A—C12A—C13A	-0.2 (5)	C10B—C11B—C12B—C13B	-0.1 (5)
C11A—C12A—C13A—C14A	-1.0 (5)	C11B—C12B—C13B—C14B	-0.3 (5)
C11A—C12A—C13A—Br1A	177.8 (2)	C11B—C12B—C13B—Br1B	177.5 (3)
C12A—C13A—C14A—C15A	0.8 (5)	C12B—C13B—C14B—C15B	0.8 (5)
Br1A—C13A—C14A—C15A	-178.0 (2)	Br1B—C13B—C14B—C15B	-177.1 (2)
C13A—C14A—C15A—C10A	0.6 (5)	C13B—C14B—C15B—C10B	-0.7 (5)
C11A—C10A—C15A—C14A	-1.7 (5)	C11B—C10B—C15B—C14B	0.3 (5)
N1A—C10A—C15A—C14A	176.3 (3)	N1B-C10B-C15B-C14B	-179.7(3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6A/N4A/C7A/N5A/N6A ring.

<i>D</i> —Н	H···A	D····A	D—H···A
0.82	2.18	2.979 (4)	165
0.88	2.15	3.015 (4)	167
0.95	2.40	3.022 (5)	123
0.95	2.61	3.512 (4)	159
	<i>D</i> —H 0.82 0.88 0.95 0.95	D—H H···A 0.82 2.18 0.88 2.15 0.95 2.40 0.95 2.61	D—H H···A D···A 0.82 2.18 2.979 (4) 0.88 2.15 3.015 (4) 0.95 2.40 3.022 (5) 0.95 2.61 3.512 (4)

supplementary materials

$C4A$ — $H4AA$ ···· $N6B^{iii}$	0.95	2.46	3.257 (5)	141
C1 <i>B</i> —H1 <i>BA</i> ···N3 <i>B</i>	0.95	2.39	3.023 (5)	123
C4B—H4BA····N6A ⁱⁱⁱ	0.95	2.41	3.210 (5)	142
C16A—H16B…N3B	0.98	2.57	3.445 (5)	149
C16A—H16C···Cg1 ^{iv}	0.98	2.72	3.469 (4)	133

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) *x*, -*y*+3/2, *z*-1/2; (iii) -*x*+1, -*y*+2, -*z*+2; (iv) -*x*+1, -*y*+1, -*z*+2.